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SUMMARY. 

A Markov chain based two-parameter stochastic model has been developed to predict tillage-induced crushing of soil 
aggregates. Model parameters have been identified for several tillage operations on two soil types from field data. 
The simulation results suggest that the crushing model can predict tillage effects on soil aggregate size distribution 
reasonably well with average prediction errors within 3% for the limited cases available for verification. 
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Abstract' 

A Markov chain based two-parameter model has been developed to model the tillage-induced crushing of soil 

aggregates. Model parameters were identified for several tillage operations on two soil types with a downhill simplex 

multidimensional minimization approach. The simulation results suggest that the crushing model can predict tillage- 

induced aggregate crushing reasonably well. The average prediction errors are within 3 percent for the limited cases 

of verification. This study indicates that the stochastic simulation is better than the conventional deterministic 

method in estimating the tillage effects on soil aggregate size distribution because of the apparent randomness of the 

variability in the field data. 

Introduction 

The Wind Erosion Prediction System (WEPS), presently being developed by the Agricultural Research Service, 

USDA (Hagen, 1991), need the service of a TILLAGE submodel for simulating the effects of various tillage and 

management operations performed on farm soils. One of the major tillage actions is crushing or breaking of soil 

aggregates (clods) as pointed out by Cole (1988). The objective of this study is to model the crushing effect on soil 

aggregates under different soil conditions and tillage practices. The specific task of this study is to develop a 

simulation model based on field collected pre-tillage and post-tillage aggregate size distribution samples. The model 

will then be incorporated into the TILLAGE submodel, where post-tillage aggregate size distribution values will be 

predicted from pre-tillage aggregate size distribution, tillage operation being performed, soil type, and possibly other 

factors. 

A deterministic model', Eq.(l), which was originally used for modeling solid grinding processes (Austin, 1971/1972) 

based on the conservation of mass principle, was employed to model the crushing process. 

Contribution No xx-XXXJ from the Kansas Agricultural Experiment Station. 

Deterministic model means that all the components of the model are deterministic. 
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(1) 

where: wdi/ is the initial mass aggregate size fraction distribution 

wJi] is the final mass aggregate size fraction distribution 

Bki is the cumulative distribution function (mass fraction of material broken from size class k which 

falls into smaller size classes than size interval i) 

si and s, are the selected fractions of size interval i and k, respectively, for breakage 

N is the total number of sieve sizes 

In words, Eq.(l) can be stated as "the mass of material in size class i after one stage of tillage equals the sum of 

material broken into size class i from larger size classes plus the original material in size class i minus the material 

broken out of size class i". It is obvious that the success of Eq.(l) relies on how well we can estimate Bki and si 

for different tillage operations and soil conditions, or in other words, how sensitive the parameters in functions Bki 

and si responds to various situations. Many possible functional forms for both Bki and si as suggested by Austin 

(1984) were tried with back-calculation parameter estimation procedures used by Gupta (1981). But the results did 

not suggest a clear relationship between the parameters estimated and soil conditions because: a) it is hard to find 

two appropriate functional forms for Bki and si simultaneously, and b) the model, Eq.(l), is too sensitive to the 

variability (noise) existing in the field data. 

As a result of the difficulties with the deterministic model, a stochastic approach was pursued to model the crushing 

process because: a) significant variance in the field data existed which could be treated as a random process, and 

b) a unified treatment would enable us to avoid the complications encountered with a separate Bki and s;. This report 

describes some of the efforts in that stochastic model development. 
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Experimental Data Sets 

The aggregate size distribution (ASD) data sets used in this study were obtained from several experimental field 

studies, some of which have been published (Tangie, et al, 1990; Ambe, 1991; and Wagner, et al, 1991). All of the 

experiments were conducted on two soils (Table 1): Kim0 silty clay loam (clayey over loamy, montmorillonitic, 

mesic Aquic Hapludolls) and Eudora silt loam (coarse-silty, mixed, mesic Fluventic Hapludolls) at the Kansas River 

Valley Experiment Field near Topeka, Kansas. Individual objectives and experimental designs of these field studies 

varied, however each of these experiments contained pre- and post-tillage ASD measurements of which some were 

suitable for use in the development of the stochastic aggregate crushing model. 

The quantity and number of replications of ASD samples used varied among the experiments but all were collected 

and processed in the same manner. ASD samples (approx. 10 kg) were collected from the fust 15 cm of soil or from 

within the entire prior tillage depth for consolidated and unconsolidated pre-tillage soil conditions respectively. Post- 

tillage ASD samples were obtained from within the resulting tillage tool processing depth. These samples were 

extracted at randomly selected locations (between wheel tracks) in each plot using a 30 x 23 cm flat square-cornered 

shovel, as described by Chepil (1962), and placed in 46 x 30 x 6 cm plastic tubs. All aggregate size distribution 

samples were air-dried in a greenhouse prior to sieving with a modified combined rotary sieve (Lyles et al., 1970). 

Suitable ASD data sets were available for a variety of tillage implements although the size of the data sets varied 

among the tillage tools with some implements having multiple data sets for both soils to single data sets on only one 

soil. All speeds and depths were typical for each respective tillage operation. Those tillage implements were: 

1. 

2. 

3. 

4. 

offset disk - 45 cm dia. blades with a 30 cm inter-disk spacing. 

point chisel - two ranks of 36 cm deep curved shanks with an inter-tool rank spacing of 60 cm. 

springtooth cultivator - three ranks with an inter-tool rank spacing of 45 cm. 

rotary tiller - typical garden tractor powered rotary tiller with a blade radius of 16 cm. 
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Model Description and Identification 

Wagner-5 

The stochastic model2 for the crushing process is a Markov3 chain model (Bhat, 1984), which can be stated as 

follows in the context of the soil aggregate crushing process: 

A soil aggregate is assumed to consist of many particles with each having an infinitesimal volume and a 

unit mass. The soil particles can only travel downward from a larger aggregate size class to smaller 

aggregate size classes after each tillage pass (crushing of an aggregate). If a size class is called a "state", 

then the transition of soil particles from one state to another can be treated as a completely random event 

A probability matrix, P[<j], can be constructed for all possible transitions occurring in the soil when its 

aggregate size distribution (mass fractions across different size classes) shifts or transfers from wdi] to 

wr[k]co ,o i-l, after one tillage pass. P[i,j], often called a transition matrk, maintains the properties of a 

Markov chain and does not change with the number of tillage passes performed but depends on the type 

of tillage and the specific soil conditions. 

Mathematically, the Markov chain based crushing model has a very simple form: 

The effectiveness of the model relies on how accurately the transition matrix P[i,j] can be estimated. According to 

the model statement, the transition matrix, P[i,j], can be generalized as a lower triangular matrix, where the states 

with smaller index values correspond to the smaller aggregate size classes (size intervals) and vice versa. 

Stochastic model is a model which has at least one component which will be treated as exhibiting random behavior. 
A Markov process is one in which the next "state" is dependent only on the present "state" and is independent of any previous "states". 
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Since it is almost impossible to estimate each transition probability, p6, on a one by one basis, it is assumed that the 

pq observes a binomial distribution4 as shown in Eq.(4), since the binomial distribution is one of the simplest and 

most profound discrete probability distribution functions. 

i = 1,2 ,..., n , j - 1,2 ,....., i (4) 

In Eq.(4) p i  is defined as the probability function of breakage, which has a value within the interval [0,1] and can 

be generally expressed as an algebraic function of sieve size xi and a number of parameters a,, %,...,am. 

The probability function of breakage, pi. reflects how much breaking is occurring in the aggregate size class i. The 

larger p i  is, the smaller the percentage of soil aggregates of size class i that will break into smaller size classes. If 

pi  = I ,  then no aggregates of size class i are being broken down and ifp, = 0, then all of the aggregates in size class 

i are being broken down into smaller size classes. 

I t  is the probability distribution of Bernoulli trials, which are repeated independent trials. Each trial has two possible outcomes and the 
corresponding probability remains the same for all trials. 
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It is presumed intuitively that p i  is related to the tillage tool, the soil conditions and the sieve cut sizes used in 

measuring wdi] and w,[i]. Therefore, the a, parameters in Eq.(5) are expected to be functions of those conditions. 

In this analysis, the focus is on a two parameter representation of a breakage probability function such as Eq.(6), 

primarily because: 1) it is complicated to identify multiple parameters, and 2) the size of the data file for model 

parameterization is small (8 pairs of data points as shown in Table 2 for an eight-cut rotary sieve). Therefore, two 

parameters were deemed adequate to reflect the variability of the data. 

The model identification includes finding a suitablep, function and then searching for the parameters of the function 

for different tillage tools and soil conditions. Several functional representations of pi  were identified. Initial study 

suggests that four functions are most promising. They are: 

B 

Pi = a[$] 

p i  = 1.0 - exp -a + p- [ 2) 
1.0 

Pi = 

where: xi’s are individual sieve sizes and x,, is the maximum sieve size. 

a and I) are the parameters to be determined. 
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A back-calculation procedure is used to estimate a and B in the above equations based on known wdi] and wJi]. 

It is a multi-dimensional minimization of the target function: 

Two types of multi-dimensional minimization algorithms are used in the parameter identification. One is the 

gradient-based method which requires calculation of derivatives for the function (Press et al, 1988). It was found 

that the gradient based-methods converge slowly and are very sensitive to the initial conditions. Another type of 

minimization algorithms are gradient-free methods such as the Powell minimization and the downhill simplex 

method. It was found that the gradient-free methods gave almost identical results and showed less sensitivity to the 

initial conditions. Most of the calculations were carried out with the downhill simplex method. A computer program 

was written in the C language and based on code published by Press et a1 (1988). 

Data used for model parameterization were extracted from experimental field data. The data were grouped into the 

format as shown in Table 1 after computing the mass percentage distributions, removing data sets containing apparent 

errors, and averaging multiple observations for each measurement. Because of field data collection problems and 

the randomness associated with the tillage operation and field conditions, there were still relatively large variances 

in the data sets. 

Results and Discussion 

Model identification was carried out with data collected from two soil types, a silt loam and silty clay loam soil 

(Table 1). Four different tillage implements were used: an ofket disk, rotary tiller, point chisel and springtooth 

cultivator. 
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The most suitable functional representation for pi is found to be the form of Eq.10 as shown in Eq.12. 

1.0 
P; - 

l+exp  -a + p- [ s:) 
where’: gmd, are geometric means of xM and xi (geometric mean dia. of aggregates in each size class) 

gmd,, is geometric mean of x, and x,,+~ (geometric mean dia. of aggregates in largest size class) 

Parameter a reflects the breakage of all soil aggregates regardless of size. As a decreases, the percentage of soil 

aggregates breaking increases. Parameter B reflects the unevenness of breakage among aggregates in different size 

classes. Large I3 values means that crushing mainly affects the large soil aggregates. 

The parameters in the model represented by Eq.(2), (3), (4) and (12) were estimated for four tillage tools using the 

back calculation procedure. The results are listed in Table 3. Although the parameters in Table 3 are derived from 

only a few sets of field data, they give very good indications of how much crushing each tillage tool causes. Based 

on the a values for the silt loam, the tiller produces the most overall crushing and the cultivator produces the least. 

The disk has more crushing of larger aggregates because of its relative large B value. For the silty clay loam, the 

tiller still generates the most crushing while the disk and cultivator exhibit strong effects on large aggregates. 

To judge how much crushing is caused by a tillage implement based upon its two parameters, the following rules 

of thumb can be applied: 

1. See whether a is small (less than 1.5). If so, then the tillage tool will be crushing or breaking down a large 

percentage of the aggregates. 

For a rotary sieve of II sieves, the x,, and x,,, are arbitrary minimum and maximum aggregate sizes assumed to exist in the data. n e  values 
used in this analysis were 0.10 mm and 152.4 mm respectively as shown in Table 2. 
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If a is not small, then see if B is equal to or larger than a. If so, then the tillage tool will be breaking down 

a high percentage of the larger aggregates. 

If a is large and B is small, then the tillage tool will produce little crushing or breaking down of soil 

aggregates. 

2. 

3. 

Relatively large standard deviations shown in Table 3 encountered in the parameter identification processes are 

caused by the variability in the field data. Major problems can exist in collecting valid field data. Some are: a) 

measuring the ASD of compacted soil, b) obtaining accurate estimates of field ASD values of sandy soils because 

of aggregate susceptibility to damage during the rotary sieving process, and c) the effects of water content. 

With the parameters identified, the crushing model was further verified with limited data sets from other field 

experiments. Figure 1 to Figure 4 show four of the simulation results of the offset disk on two types of soil. It can 

be seen that the offset disk causes significant breakup of large clods of silty clay soil (Figure 1) and causes little 

breakup of same soil without large clods (Figure 2). The crushing induced by the offset disk on sandy soil, Le., silt 

loam, has different characteristics from the crushing of clay soil as shown in Figure 3 and 4, where the whole ASD 

curves shift downward after the tillage. Figure 3 and 4 also suggest that the soil moisture content seems not affecting 

the crushing significantly. The four plots show that the model can predict the disk-induced crushing processes 

reasonably well. As a matter of fact, the prediction errors, defined as the average error across all the size classes, 

are within 3 percent for all of the verification cases. However, the crushing model needs to be further verified with 

data from other tillage experiments. 

The stochastic crushing model can also be used in reverse by reversing the transition matrix P[i,jjl, to estimate pre- 

tillage aggregate mass fraction distributions based on the measurement of the post-tillage distribution. Another 

possible application is modeling a series of crushing events by multiplying the transition matrix associated with each 

tillage tool together. 
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Summary and Conclusions 

This study can be summarized as follows: 

1. 

2. 

3. 

4. 

5. 

The deterministic model represented by Eq.(l) cannot simulate tillage-induced crushing accurately because 

of difficulties associated with parameter identification due to the large variabiility in the field data. 

The stochastic model appears suitable for modeling the crushing process when described as a random 

process. The Markov chain based two-parameter stochastic crushing model appears to give consistent and 

fairly accurate estimations of disk-induced crushing based on the limited data analyzed. The simulation 

errors are within 3 percent. 

More tillage data, with other implements under various soils and soil conditions are needed to extend the 

application of this modeling approach. 

To increase the precision of parameter identification, the field data measurement and collection procedures 

will require improvement to reduce the variability in pre- and post-tillage aggregate size distribution data. 

Although the stochastic crushing model has suc~essfi~lly simulated tillage-induced crushing on two types 

of soil (assuming one soil condition) and has given a consistent estimation of the parameters involved, there 

is still a major challenge ahead to parameterize the model for various soil and tillage conditions. This will 

require a large amount of field data from well designed and executed experiments. 
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Table 1. Selected Soil Properties 

Property Eudora Silt Loam Kim0 Silty Clay Loam 

Textural Composition: 
sand (2.0-0.05 mm) 29.1 % 20.0% 
silt (0.05-0.002 mm) 54.5% 44.0% 
clay (g0.002 mm) 16.4% 36.0% 

Water Content at: 
-33 J/kg 
-1 Kj/kg 

0.165 g/g 0.249 g/g 
0.061 g/g 0.140 g/g 

Standard Proctor Test: 
Maximum Density 1.58 Mg/m3 1 5 3  Mg/m3 
Optimum Water Con- 0.155 g/g 0.192 g/g 
tent 

Organic Matter: 1.50% 220% 

Ph: 6.30 6.50 

Exchangeable Cations: 
K 149 ppm 350 ppm 
Ca 1698 pprn 3470 ppm 
Mg 208 ppm 330 ppm 
Na 8 PPm 14 PPm 
AI 0 PPm 0 PPm 

Table 2. A Sample Crushing Data Form 

Soil type: Silt loam 
Tillage tool: Offset Disk 
Experiment index: 91-8-ASD111.1 
Sieve-size index (i) 0 1 2 3  4 5 6 7 8 
Sieve-size xi (mm) 0.01 0.42 0.84 2.0 6.36 19.05 44.45 76.2 152.4 
ASD on mass basis: 
Before tillage (w,[i]) 7.8% 2.9% 6.5% 14.9% 24.4% 25.8% 10.0% 7.6% 
After tillage (w,[i]) 7.9% 4.5% 10.3% 20.4% 26.3% 20.8% 6.9% 2.9% 
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Table 3. Parameters of Crushing Model for Four Types of Tillage Tools 

Tillage 
Imp1 ement 

Silt Loam Silty Clay Loam 

a B # data sets a B # data sets 

Tiller mean 
std. dev. 

Disk mean 
std. dev. 

Chisel mean 
std. dev. 

Cultivator mean 
std. dev. 

1.4 -1.2 5 
0.6 1.7 

2.8 0.75 9 
0.5 0.28 

3.0 -0.22 1 

1.5 0.56 3 
0.3 0.55 

4.3 2.0 8 
1.6 1.5 

2.4 -20 4 
1.2 4.6 

3.0 1.8 2 
0.9 0.5 
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Figure 1 Crushing by the offset disk on silty clay loam with many large clods 
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Figure 2 Crushing by the offset disk on silty clay loam with few large clods 
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Figure 3 Crushing by the o&et disk on silt loam of high moisture content 
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Figure 4 Crushing by the offset disk on silt loam of low moisture content 


